Small Farmer's Journal

Facebook  YouTube

Small Farmer's Journal
PO Box 1627
Sisters, Oregon 97759
800-876-2893
541-549-2064
agrarian@smallfarmersjournal.com
Mon - Thu, 8am - 4pm PDT

Horseshoeing Part 1C

A Text-Book of

Horseshoeing

Part 1C

by A. Lungwitz and John W. Adams, copyright 1897

This is the first part in what will be a complete reprint of Lungwitz & Adams’ important ‘Textbook of Horse-Shoeing’ originally written in the 1880’s and containing some remarkably modern information. This volume goes into the greatest detail on the subject and with a intelligent clarity that belies how old it is. Coming as it did at end of the first horse era, and well before anyone might have reasonably predicted the advent of the automobile and tractor, it is apparent how important the equine was to the whole of society. The authors, of Germany and Pennsylvania, compiled what was, at the time, to be the ultimate word on the subject. As with all of the reprints we have offered over forty years time, we trust that readers will be triggered by these words to complete their education with diligence and introspection. Just because something is old doesn’t always make it right, and of course just because something is new doesn’t make it the true culmination. LRM

E. The Blood-Vessels and Nerves.

Vessels which carry blood from the heart to the tissues are called arteries, while those which return the blood to the heart from the tissues are called veins. Arteries and veins are connected by very small, thread-like vessels called capillaries, which originate in the smallest arteries and are so minute that they can not be seen without the aid of a microscope. The capillaries penetrate the soft tissues in every direction, and finally unite to form small veins. For our purpose we need consider only the arteries and veins.

The arteries carrying blood from the heart ramify and subdivide in all parts of the body, and thus reach the foot. They are thick-walled, very elastic tubes, without valves, and carry bright-red blood, which flows in spurts, as can be seen when an artery is cut. If a finger be pressed lightly over an artery lying near the surface, the blood-wave can be felt as a light stroke (pulse). The character of the pulse is important, because in inflammations of the pododerm or horn-producing membrane of the foot we can ascertain by feeling that the pulse is stronger than usual in the large arteries carrying blood to the inflamed foot.

Horseshoeing Part 1B

On either side of the phalanges below the fetlock-joint there lies an artery called the digital artery (Fig. 25, a). The pulse can be felt in it as it passes over the fetlock at A, Fig. 25. It gives off the following collateral (side) branches: 1. The artery of the first phalanx (perpendicular artery), with anterior and posterior branches. 2. The artery of the plantar cushion, which supplies with blood the plantar cushion, the velvety tissue of the sole and frog, the bar portion of the coronary band, and the sensitive laminae of the bars. 3. The coronary artery, which carries blood to the coronary band, os coronae, ligaments of the coronary and pedal joints, flexor tendons, and skin.

The terminal branches of the digital arteries are the preplantar and plantar ungual arteries. The preplantar artery passes through the notch in the wing of the os pedis, then along the preplantar fissure, splitting up into many branches, which spread over and penetrate the porous surface of the os pedis. The plantar artery courses along the plantar fissure, enters the plantar foramen, and passes into the semilunar sinus of the os pedis, where it unites with the terminal branch of the opposite digital artery, forming the semi-lunar arch.

After the arterial or pure blood passes through the capillaries it is collected by the veins, to be returned to the heart; then it is driven to the lungs for purification, and is again returned to the heart, from whence it is pumped through the arteries to all parts of the body.

Horseshoeing Part 1C

The veins are more numerous than the arteries; they have thinner walls, and the larger ones are provided with valves that prevent the impure blood from flowing backward. The veins carry impure or dark-red blood towards the heart, and if one is opened the dark blood flows in a steady stream; it does not spurt. The great number of veinlets in the lower parts of the foot form a complex net-work (plexus) of vessels which are in such manifold and close union with one another that checking the flood in one part does not seriously interfere with the flowing of the blood towards the larger veins. The following are the most important of these net-works of veins or veinous plexus: (1) the solar venous plexus (Fig. 26, D); (2) the podophyllous venous plexus (Fig. 25, C); (3) superficial coronary venous plexus (Fig. 25, B); (4) bulbar venous plexus (Fig. 26, B). All these plexus of small veins contribute to form the digital veins (Fig. 25 and 26, A).

Nerves are roundish white cords which come from the brain and spinal cord; they generally accompany arteries. They divide and subdivide into smaller and smaller branches till they become invisible to the naked eye and are lost in the tissues. The nerves that are found in the foot come from the spinal cord, and because the largest nerves of the foot accompany the digital arteries they are called digital nerves (Fig. 25, 1). The branches ramify throughout all parts of the foot except the horny box and the hair. Nerves, according to their use or function, are classed as motor and sensory. The motor nerves end in muscles which they stimulate to action and control. The sensory nerves terminate in the skin and in the soft tissues just under the horny box or hoof (pododerm), and render these parts sensitive; that is, they convey certain feelings, as, for example, the pain caused by bruising, pricking, or close-nailing, to the brain and consciousness.

F. The Protective Organs of the Foot

The protective organs are the skin and the horny box or hoof.

The external skin, or hide, covers the entire body; in the feet it covers the bones, tendons, and ligaments, even passing in under the hoof and directly covering the os pedis. This portion of the skin, enclosed by the hoof and therefore invisible, is called the pododerm or foot-skin. In Germany it is called the hoof-skin (huflederhaut), because it is a continuation of the outer visible skin, and because it secretes the hoof – that is, the hoof is produced by it. That part of the skin which is covered with hair is known as the external or hair-skin.

Horseshoeing Part 1C

(a) The hair-skin (Fig. 27, a) consists of three superposed layers – (1) the external superficial layer, or epidermis; (2) the middle layer, derm or leather-skin (so-called because leather is made from it); (3) the internal layer, or subcutaneous connective tissue.

  1. The external layer, or epidermis, is composed merely of single flattened, horn-like cells (scales) lying side by side and over one another, and uniting to form one entire structure – a thin, horn-like layer, without blood-vessels or nerves. It extends over the entire surface of the body, and protects the underlying, very sensitive middle layer from external influences. The oldest cell-layers lie on the outer surface, and are being continuously brushed off in patches or scales, while new ones are constantly being formed on the outer surface of the middle layer.
  2. The middle layer, leather-skin or dermis, is composed of solid, fibrous, and elastic tissues, and contains many blood-vessels, small nerves, sweat- and oil-glands, and hair follicles from which the hair grows. The hair upon the posterior surface of the fetlock-joint is usually long and coarse, forming a tuft known as the “footlock,” which encloses a horny spur, called the ergot. Common bred horses have, as a rule, larger and coarser footlocks than thoroughbreds. The derm or leather-skin, which produces the hair and epiderm, is the thickest and most important layer of the skin.
  3. The inner layer, or subcutaneous tissue, unites the middle layer with the muscles, tendons, ligaments, bones, or other structures. It is that loose fibrous mesh or net-work through which the butcher cuts in removing the hide from the carcass.

Horseshoeing Part 1C

(b) The hoof-skin (Figs. 27 and 28, b, c, d), or pododerm, is completely enclosed by the hoof. Although it is only an extension of the derm or middle layer of the hair-skin, it differs from the latter in structure and relations.

In order to study the pododerm we should not wrench the hoof off with violence, but should allow the foot to partially decompose by leaving it for six to eight days at ordinary room temperature; it can then be removed without injuring the pododerm. After the hoof has been removed the entire pododerm presents a more or less dark-red color (flesh-color), which is due to the great number of blood-vessels that it contains. For this reason different parts of the pododerm have received the prefix “fleshy,” as for example, fleshy wall, fleshy sole, fleshy frog, etc. The pododerm is what the uninformed horseshoer calls the “quick.” I will here remark that the three layers of the external or hair-skin are represented in the foot; however, the epidermis is in an entirely different form – namely, the horny box or hoof. The internal layer or subcutaneous tissue of the hair-skin is absent in those parts of the foot where the pododerm covers the os pedis. There remains, therefore, only the middle layer, derm, or pododerm, which secretes the hoof, and which is the prolongation and representative of the middle layer of the hair-skin. The pododerm is distinguished from the derm of the hair-skin chiefly by the absence of hairs, oil- and sweat-glands, and the presence on its outer surface of fleshy, sensitive laminae and small thread-like projections called villi.

The pododerm consists of five different parts: the perioplic band, the coronary band, the sensitive laminae (podophyllous tissue), the velvety tissue of the sole, and the velvety tissue of the fleshy frog.

1. The perioplic band (Fig. 28, b) is a narrow ridge, about one-fifth to one-fourth or an inch wide, lying between the hair-skin and the coronary band. Somewhat broader at the toe than on the sides, it broadens out near the bulbs of the heels, over which it passes to end in the velvety tissue of the fleshy frog. It is separated from the coronary band by a narrow depression called the coronary furrow (Moeller). The surface of the perioplic band glistens faintly, and is thickly studded with numerous thread-like projections called villi, which are from one twenty-fourth to one-twelfth of an inch in length.

SmallFarmersJournal.com is a live, ever-changing subscription website. To gain access to all the content on this site, subscribe for just $5 per month. If you are not completely satisfied, cancel at any time. Here at your own convenience you can access past articles from Small Farmer's Journal's first forty years and all of the brand new content of new issues. You will also find posts of complete equipment manuals, a wide assortment of valuable ads, a vibrant events calendar, and up to the minute small farm news bulletins. The site features weather forecasts for your own area, moon phase calendaring for farm decisions, recipes, and loads of miscellaneous information.

Spotlight On: Crops & Soil

Purslane, Portahoopies and Plow Planted Peas

Purslane, Portahoopies and Plow Planted Peas

For those not familiar with this tasty, nutritious weed, purslane can be a real challenge to manage in vegetable crops for a number of reasons. The seeds of this weed remain viable for many years in the garden, and generally do not germinate until hot weather — that is, after many of the market garden crops have already been planted. To make matters worse, this succulent plant often reroots after cultivation. Purslane also grows so close to the ground that it is impossible to control by mowing.

Marketable Cover Crops

Marketable Cover Crops

by:
from issue:

Our cover crops have to provide the benefits of smothering weeds, improving soil structure, and replenishing organic matter. They also have to produce some income. For these purposes, we use turnips, mustard and lettuce within our plant successions. I broadcast these seeds thickly on areas where cover crops are necessary and let them do their work.

Raised Bed Gardening

Raised Bed Gardening

by:
from issue:

Raised beds may not be right for everyone, and our way is not the only way. I have seen raised beds made from rows of 5’ diameter kiddy pools, and heard of a fellow who collected junk refrigerators from the dump and lined them up on their backs into a rainbow of colored enameled steel raised beds. Even rows of five-gallon pails filled with plants count as raised beds in my estimation. Do it any way you care to, but do it if it’s right for you.

Cultivating Questions Winterkilled Cover Crops for a Mild Climate

Cultivating Questions: Winterkilled Cover Crops For A Mild Climate Part 1

Our mild climate makes it too easy to overwinter cover crops. Then the typically wet springs (and, on our farm, wet soils) let the cover put on loads of topgrowth before getting on the soil. Buckwheat is the only crop that I can be certain will winterkill. Field peas, oats, annual rye and crimson clover have all overwintered here. Any suggestions?

Making Sorghum Molasses

Making Sorghum Molasses

by:
from issue:

Growing sorghum doesn’t take much work, according to Buhrman. You plant it in the spring, work it a couple of times and that’s about all that’s required until late in the growing season. That is when the work begins. Before it is cut, all the stalks have to be “bladed” – the leaves removed from the stalks. It’s then cut, then the tassles are cut off, and the stalks are fed through a crusher. The crusher forces the juices out of the plant. The sorghum juice is then boiled in a vat for four to five hours until nothing is left but the syrup.

Mullein Indigenous Friend to All

Mullein: Indigenous Friend to All

by:
from issue:

Mullein is a hardy native, soft and sturdy requiring no extra effort to thrive on your part. Whether you care to make your own medicines or not, consider mullein’s value to bees, bumblebees, butterflies, moths, dragonflies, who are needing nectar and nourishment that is toxin free and safe to consume. In this case, all you have to do is… nothing. What could be simpler?

Winter Production of Fresh Vegetables

Winter Production of Fresh Vegetables

by:
from issue:

Any claim about winter production of fresh vegetables, with minimal or no heating or heat storage systems, seems highly improbable. The weather is too cold and the days are too short. Low winter temperatures, however, are not an insurmountable barrier. Nor is winter day-length the barrier it may appear to be. In fact most of the continental US has far more winter sunshine than parts of the world where, due to milder temperatures, fresh winter vegetable production has a long tradition.

Horsedrawn No-Till Garlic

Horsedrawn No-Till Garlic

We were inspired to try no-tilling vegetables into cover crops after attending the Groffs’ field day in 1996. No-tilling warm season vegetables has proved problematic at our site due to the mulch of cover crop residues keeping the soil too cool and attracting slugs. We thought that no-tilling garlic into this cover crop of oats and Canadian field peas might be the ticket as garlic seems to appreciate being mulched.

Cabbage

Cabbage

by:
from issue:

Cabbage is the most important vegetable commercially of the cole crops, which include cabbage, cauliflower, Brussels sprouts, kale, kohlrabi, collard, broccoli, and many others. It also ranks as one of the most important of all vegetable crops and is universally cultivated as a garden, truck and general farm crop. The market for cabbage, like that for potatoes, is continuous throughout the year, and this tends to make it one of the staple vegetables.

An Introduction Into Plant Polyculture

An excerpt from What’s Wrong With My Fruit Garden
Companion Planting for Beginners

Ginseng Culture

Ginseng Culture

U.S. Department of Agriculture Farmer’s Bulletin No. 1184 Issued 1921, Revised 1941 — The evident preference of the Chinese for the wild root and the unsatisfactory state of the general market for cultivated ginseng have caused grave doubts as to the future prospects of the industry. These doubts will probably be realized unless growers should strive for quality of product and not for quantity of production, as has been the all too common practice in the past.

Farm Manure

Farm Manure

Naturally there is great variation in manure according to the animals it is made by, the feeding and bedding material, and the manner in which it is kept. Different analyses naturally shows different results and the tables here given serve only as a guide or index to the various kinds. The manure heap, by the way, is no place for old tin cans, bottles, glass, and other similar waste material.

Beautiful Grasses

What follow are a series of magnificent hundred-year old botanist’s watercolors depicting several useful grass varieties. Artworks such as this are found on the pages of Small Farmer’s Journal quite regularly and may be part of the reason that the small farm world considers this unusual magazine to be one of the world’s periodical gold standards.

Cultivating Questions

Cultivating Questions: Follow-Up On Phosphorus

We like to think that the bio-extensive approach to market gardening minimizes the risk of overloading the soil with nutrients because the fallow lands make it possible to grow lots of cover crops to maintain soil structure and organic matter rather than relying on large quantities of manure and compost. However, we are now seeing the consequences of ignoring our own farm philosophy when we resorted to off-farm inputs to correct a phosphate deficiency.

Rice as a New Staple Crop for Very Cold Climates

Rice as a New Staple Crop for Very Cold Climates

by: ,
from issue:

If you were visiting Earth from some other planet and had to describe its inhabitants upon your return, you might say that the average person eats rice, and grows it as well, usually on a small scale. You’d be accurately describing the habits of over a quarter of the world’s population. Rice has a special story with an exciting chapter now unfolding in the northeast USA among a small but growing group of farmers and growers.

What We've Learned From Compost

What We’ve Learned From Compost

by:
from issue:

Our compost piles will age for at least a year before being added to the garden. We have learned that the slow aging is more beneficial to the decomposition process as well as not losing nearly as much nitrogen to off-gassing as happens with the hot and fast methods. Another benefit is the decomposition is much more thorough, destroying weed seeds, pathogens and any unwanted chemicals much better in a slower composting setup.

Small Farmer's Journal

Small Farmer's Journal
PO Box 1627
Sisters, Oregon 97759
800-876-2893
541-549-2064
agrarian@smallfarmersjournal.com
Mon - Thu, 8am - 4pm PDT