SFJ

Facebook  YouTube

Small Farmer's Journal
PO Box 1627
Sisters, Oregon 97759
800-876-2893
541-549-2064
agrarian@smallfarmersjournal.com
Mon - Thu, 8am - 4pm PDT

Syrup From Oregons Big-Leaf Maple

Syrup From Oregons Big-Leaf Maple

Syrup From Oregon’s Big Leaf Maple

by Victor Morejohn, photos by Tal Blankenship

There is a great potential in establishment of a seasonal “sugarbush” industry for small farmers of the northwestern states, particularly western Oregon and Washington.

Five syrup producing species of maples (Sugar, Black, Red, Silver, Box Elder) are found mainly east of the Rocky Mountains. These species overlap in geographic distribution from the southern Great Lakes region eastward. The Sugar Maple (Acre saccharum), often called hard rock maple, and the Black Maple (Acre nigrum) are considered the most important syrup producing species in the United States.

The Box Elder (Acre negundo) and the Big-leaf Maple (Acre macrophyllum) are the only syrup producing maples of the Pacific Northwest. Properly made syrup from these two western maples is indistinguishable from the syrup of maples of the midwestern and northeastern states.

When to Tap the Trees

Whether you live in the northeast, midwest or along the Pacific slope, the time to start tapping the trees may come anytime from mid-January to mid-March, whenever spring begins fingering into winter. In most areas of the northwest, January and February are the months to begin tapping. The time to tap maples for sap is on clear, warm days after a snowy, icy or frosty night, when the temperature drops below freezing. At this time of year, west of the Cascades in central and southern Oregon, weather conditions from year to year, however, are unreliable. We may have five to six weeks without frosts, overcast days or intermittent rains with night-time temperatures above freezing. If so, no maple syrup for that year. Or we may be blessed with clear, sunny days with above freezing daytime temperatures and crispy, frosted clear nights below freezing. This type of weather makes the sap flow.

I generally cut a branch tip off below a bud and watch it for a few minutes. If it begins to bleed sap, it is time to get your brace and 7/16″ wood bit and start drilling your holes. We have over fifty-five Big Leaf Maples along a 3/4 mile stretch of our farm along the South Umpqua River. I try to be selective and choose trees that are not too crowded with Ash or Cottonwood trees. I choose open-crowned trees that have not been reaching for sunlight under the larger Cottonwoods. These trees produce more leaves (have more chlorophyll) and consequently are capable of putting more sugar in their sap.

Syrup From Oregons Big-Leaf Maple

Figure 1: The commercial type of spile (below) with hook attached and its solid steel driver (above). The part of the spile that fits into the hole in the tree is to the right of the hook. Note that it has openings along the tapered side and at the tip.

How to Tap Trees

Although it is recommended that holes be drilled on the southern side of maples for more sap flow, I have found that some trees located on southern exposed river banks, where I could only tap the north side, have yielded as much sap as trees of similar size tapped on their southern side.

Syrup From Oregons Big-Leaf Maple

Figure 2: The steel driver, between thumb and forefinger, is inserted into the spout end of the spile. Together they are placed into the tapped hole and with several hammer blows, the spile is driven in snug up to the hook.

Make the holes about waist high, three to four inches deep, slightly inclined upward into the tree; and clean out all shavings with a narrow, pointed knife. Once the hole is made, a conveyance is necessary to direct the sap into a container. Any type of cylindrical, hollow structure may be used, such as finger-sized, straight twigs that have pithy cores. These may be hollowed out and will do the job. Plastic or galvanized pipe also may be used. Commercially these things are called “spiles” (Figure 1) and are available in several styles relatively cheap ($.30 to $.75) and may be purchased from several midwestern or northeastern maple syrup and equipment and supply companies. Homemade spiles are not as efficient as the commercially manufactured types, mainly because plastic or galvanized pipe sections are not tapered. The commercial types are conical (tapered sides) for several reasons: the neck of the spile is larger in diameter (1/2″) than the bored hole (7/16″) and are hammered into the hole to make a snug fit at the neck of the spile (Figure 2). In this manner, the conical part of the spile in the hole does not touch the sides of the holes. Essentially the neck of the spile plugs the hole, preventing leakage, and sap can freely flow into the space around and in the spile tip. The metal nubbin above the spile spout serves to allow a claw hammer or small prybar to remove the spile for cleaning or for end-season removal. Plastic or galvanized pipe sections have parallel sides, fit tightly along the length of the hole, allow sap to enter only from the end within the hole, and are difficult to remove from the trees. Our neighbor, Ray Hicke, downriver from us, told me that when he was a youngster back in the Dakotas, he helped his Dad tap maples. For spiles, his Dad used old sickle bar teeth, slightly bent from tip to base to serve as spouts. He drove them point first into the trees below a drilled hole and used the rivet holes on the end of the base to wire on his containers.

Syrup From Oregons Big-Leaf Maple

Figure 3: Most any container can be used. This one had holes made with a nail below the rim, and a bail was made from a piece of wire. The sap as it comes from the tree is clear and looks like water.

Collecting the Sap

Any container may be used to collect the sap. Buckets especially made for the purpose are also available commercially. I have used any clean, metal container that I could get ahold of. The container may be fastened to the spile hook through a hole punched with a nail below the container rim, or a wire bail may be readily made and fastened to the container through two holes punched opposite each other below the rim (Figure 3). I prefer to use bails because the containers do not necessarily nest into each other as commercial bail-less ones do, and I can carry several empty ones in one hand by using their bails.

Syrup From Oregons Big-Leaf Maple

Figure 4: Our sap generally begins to flow about noon. We empty the containers at mid-afternoon and sundown into larger collecting buckets. These white plastic buckets are 3-1/2 gallon capacity.

Depending on the size of the sap containers and the rate of sap flow for the day, you may have to visit your maples once or twice in the afternoon. Bring along large collecting buckets. We use three to five gallon plastic buckets with snap-on lids (Figure 4). If you have a lot of sap to collect, carrying these large buckets filled with sap can be hard on one’s shoulders, back or elbows. If you do not have a tractor, truck or team to bring in the daily sap, use a wooden yoke over your shoulders.

From Sap to Syrup

Once the sap has been brought in, syrup making can commence. All sap should be strained to remove debris and insects. We used milk filters. Strained sap may be boiled in any container, but to be efficient it is best to use a flat pan filled three to four inches in depth with sap. If done in the home kitchen, steam from the evaporating sap can be damaging to woodwork and painted surfaces in the immediate area.

Syrup From Oregons Big-Leaf Maple

Figure 5: We partly buried a small logwood stove in the floor of an outdoor shed to reduce radiation of heat from stove. We removed the stovetop lids and exposed the entire bottom of the broaster pan (evaporator) to the fire. We kept the sap at a rolling boil and periodically added warmed sap (in bucket behind stove pipe) to maintain a 3-inch level in the pan. A piece of plywood was propped up a couple of feet away to protect the stove from chilling breezes.

One of the problems in making maple syrup outdoors on a small scale, is to be able to maintain a rolling boil in the syrup pan. If you use part of your barn, implement shed or wood shed, try to set up some form of protection from cold winds blowing on the stove (Figure 5). Be sure to keep all inflammables (hay, straw, oil, gas, etc.) away from the area where the sap is to be evaporated. On a larger scale, a “sugar shed” is constructed especially for this purpose.

As the sap boils, water is evaporated and the sugar concentration relative to the sap volume increases. The level of the boiling sap will drop slowly during evaporation and more sap will need to be added periodically. Too much cold sap added to the boiling pan will quell the boil. You have to learn to judge the correct amount to add for the size of the pan. We used a large turkey roaster pan. Allowing the fire to go to embers before more wood is added will also put down the boil. The sap should continually boil. We learned that by putting freshly gathered cold sap into large metal pots, pans or buckets on our wood stove inside the house, we could raise the temperature to near boiling, effect some evaporation and kill the yeasts and bacteria that sour sap if it sits around for a day or two during warm days.

Outside in our “sugar shed” we kept a large metal bucket warming next to the stove pipe of the log-wood stove we used for evaporation. We ladled hot sap from this bucket into the boiling syrup pan. Periodically we filled this bucket with the hot sap from the stove in the house. In this manner no cold sap was poured directly into the boiling syrup, and we had no difficulty maintaining a rolling boil.

Dependent upon your vigilance in maintaining a rolling boil, accomplished only by judicious care of the fire, the amount of firewood you will burn to produce a given quantity of syrup will approximate one cord of wood to about 25 gallons of syrup. Richard Lamore (in Thompson, Syrup Trees, 1978, p. 50) estimates one cord per 28 gallons of syrup.

It is difficult to determine the amount of time needed to evaporate a given amount of syrup to sap. There are many factors of the environment that bear upon this, such as air temperature, wind and of course the sugar content of the sap. On the average, midwestern and northeastern maple syrup producers evaporate 55 gallons of sap to produce one gallon of syrup. This figure is for the industry at large. The sugar content of individual trees may vary from as little as 1.5% to as high as 7%. The average is about 2.5%. Our Big-leaf maples have given us a ratio of 38 gallons of sap to one gallon of syrup. This is a higher yield than the sugar maple, but it is not surprising, since the Big-leaf maple has the greatest leaf area of all maples to use in photo-synthesis (making sugar from carbon dioxide and sunlight) and has a longer growing season in most northwestern regions, than midwestern and northeastern maples.

As the clear sap slowly evaporates to syrup, it will begin to take on a light brown color, and it will now readily boil up into foamy froth that must be controlled. It is critical at this stage to know when you do, in fact, have syrup. A candy thermometer will work very well. First determine the temperature at which water boils in your area. This will vary depending upon barometric pressure. It may boil at 209°F or at 212°F. Simply add 7°F to whatever temperature at which water boils in your area, and when the candy thermometer registers that summed temperature, you have syrup. Syrup that has been boiled beyond 219°F becomes dark brown and strong-flavored. Some home syrup makers judge when syrup is ready to bottle by the way it looks and runs. Bailey (in Small Farmer’s Journal, Fall, 1981, page 67) writes of the way syrup “aprons” off a ladle when ready to draw off (Figure 6).

Syrup From Oregons Big-Leaf Maple

Figure 6: The finished batch of syrup is light amber in color and weighs eleven pounds to the gallon. As some have said, “The test of syrup is in its taste.”

Although the sap was filtered at the outset, the syrup now will have to be filtered again since different ingredients of the sap have crystallized into a sandy substance referred to in the trade as “sugar sand.” This will plug milk filters quickly, and it is best to use commercially available maple syrup filters, flannel or felt if one is to have clear syrup with nothing to settle in the bottom of the jar. We poured the boiling syrup into a metal bucket, brought it to the house to filter, and bottled it in sterilized pint jars. We then processed the filled pint jars in a steam canner as double insurance against spoilage. High quality syrup is amber colored and weighs 11 pounds to the gallon.

End-Season Cleanup

Maple syrup is a farm crop, whether made from sap of wild grown trees or maples planted as in an orchard. A paramount concern is for a long productive life for the tree. Maples are not pruned to increase production, but decay of the wood should be prevented in the region of the tree where holes were drilled. After sap ceases flowing for the season, all spiles should be removed and the holes disinfected with a 1 to 10 solution of Clorox. Use a plastic squirt bottle. The holes will heal by themselves within a couple of years. All equipment used should be thoroughly cleaned with a detergent solution, rinsed and put away dry.

Tools, Equipment and Supplies Needed

  • Hatchet
  • Pruning shears
  • Brace
  • 7/16″ wood bit
  • Knife, tapered & pointed
  • Spiles
  • Spile driver
  • Hammer
  • Buckets or tin cans
  • Wire for bails
  • Candy thermometer
  • Pliers with sidecutters
  • 16d common wire nail or punch
  • Large roaster pan with lid
  • Log-burner stove
  • Firewood, split 2″ x 3″, dry
  • Plastic squirt bottle
  • Chlorine bleach (1.10 water)
  • Dipper
  • Slotted spoon
  • Flannel filters
  • Canning jars & lids

References

Agricultural Extension Service, University of Minnesota. 1974. Information on how to collect maple syrup and make maple syrup. St. Paul, Minnesota.

Bailey, L. H. 1907. Maple sugar and maple syrup. Reprinted from Cyclopedia of American Agriculture in Small Farmer’s Journal, Fall, 1981, Vol. 5, No. 4: 64-67.

Domico, Terry 1979. We make sweet syrup from Pacific Northwest trees. Mother Earth News. No. 55 (Jan/Feb): 65.

Kappel-Smith, Diana 1982. Pipeline in the sugarbush. Country Journal, Vol. IX, No. 2 (Feb): 66-74.

Nearing, Helen & Scott, 1950. The Maple Sugar Book. Schocken Books, New York.

Nickerson, Nancy 1982. Box Elder syrup. Organic Gardening. Vol 29, No. 2 (Feb): 126-128.

Pieper, Ruth 1975. We make our own maple syntp. Organic Gardening and Farming. Vol. 22, No. 1 (Jan): 78-80.

Seymour, John 1976. The Guide to Self-Sufficiency. Popular Mechanics Books, New York.

Thompson, Bruce 1978. Syrup Trees. Walnut Press, PO Box 17210, Fountain Hills, AZ 85268.

U.S. Department of Agriculture 1965. Maple Syrup Producers Manual. Agriculture Handbook No. 134. Washington: Government Printing Office. Revised Ed.

Wilson, Barbara H. 1982. Tapping the Front Yard Maple. Organic Gardening. Vol. 29, No. 2 (Feb) 122-125.

Spotlight On: How-To & Plans

Retrofitting a Fireplace with a Woodstove

How to Retrofit a Fireplace with a Woodstove

Because the venting requirements for a wood stove are different than for a fireplace you need to retrofit a stainless steel chimney liner. A liner provides the draft necessary to ensure that the stove will operate safely and efficiently.

New Idea Mower

New Idea Mower

from issue:

For proper operation the outer end of the cutter bar should lead the inner end when the machine is not in operation. After long use the cutter bar may lag back and if this happens it can be corrected by making adjustments on the cutter bar eccentric bushing as follows: First making sure that the pin and bolt in the hinge casting “A” Fig. 5 are tight and in good condition.

English Sheaf Knots

English Sheaf Knots

Long ago when grain was handled mostly by hand, the crop was cut slightly green so seed did not shatter or shake loose too easily. That crop was then gathered into ‘bundles’ or ‘sheafs’ and tied sometimes using a handful of the same grain for the cording. These sheafs were then gathered together, heads up, and leaned upon one another to form drying shocks inviting warm breezes to pass through. In old England, the field workers took great pride in their work and distinctive sheaf knots were designed and employed.

Farmrun On the Anatomy of Thrift

On the Anatomy of Thrift: Side Butchery

On the Anatomy of Thrift is an instructional series Farmrun created with Farmstead Meatsmith. Their principal intention is instruction in the matters of traditional pork processing. In a broader and more honest context, OAT is a deeply philosophical manifesto on the subject of eating animals.

A Pony-Powered Garden Cart

A Pony-Powered Garden Cart

by:
from issue:

One of the challenges I constantly face using draft ponies is finding appropriately sized equipment. Mya is a Shetland-Welsh cross, standing at 11.2 hands. Most manure spreaders are big and heavy and require a team of horses. I needed something small and light and preferably wheeled to minimize impact to the land. My husband and I looked around our budding small farm for something light, wheeled, cheap, and available, and we quickly noticed our Vermont-style garden cart.

Disc Harrow Requirements

Disc Harrow Requirements

by:
from issue:

One of the most important requirements is disc blade concavity, that is, correct concavity. Further along we set forth the purposes of disc concavity. We feel it is important enough to devote the extra time and words in a discussion of the subject, because seldom is disc concavity talked about, and very few know that there is difference enough to cause good and bad work.

Work Horse Handbook

Grooming Work Horses

The serviceability of the work horse may be increased or decreased according to the care which is bestowed upon him. If he is groomed in a perfunctory fashion his efficiency as an animal motor is lessened. On the other hand, if he is well groomed he is snappier and fresher in appearance and is constantly up on the bit.

Blacksmithing Secrets

Blacksmithing Secrets Part 1

by:
from issue:

Whether a farmer can afford a forge and anvil will depend upon the distance to a blacksmith shop, the amount of forging and other smithing work he needs to have done, and his ability as a mechanic. Although not every farmer can profitably own blacksmithing equipment, many farmers can. If a farmer cannot, he should remember that a great variety of repairs can be made with the use of only a few simple cold-metal working tools.

Swallow

Rotation As A Means Of Blight Control

Every farmer knows that when a crop is grown on the same field year after year, it becomes inferior in quality and the yield steadily diminishes.

How to Grow an Acre of Potatoes

How to Grow an Acre of Potatoes

by:
from issue:

Heretofore potato production in this country has been conducted along extensive rather than intensive lines. In other words, we have been satisfied to plant twice as many acres as should have been necessary to produce a sufficient quantity of potatoes for our food requirements. Present economic conditions compel the grower to consider more seriously the desirability of reducing the cost of production by increasing the yield per acre.

Book Review Butchering

Two New Butchering Volumes

Danforth’s BUTCHERING is an unqualified MASTERPIECE! One which actually gives me hope for the furtherance of human kind and the ripening of good farming everywhere because, in no small part, of this young author’s sensitive comprehension of the modern disconnect with food, feeding ourselves, and farming.

On The Anatomy of Thrift Fat & Slat

On the Anatomy of Thrift Part 3: Fat & Salt

On the Anatomy of Thrift is an instructional series Farmrun created with Farmstead Meatsmith. Their principal intention is instruction in the matters of traditional pork processing. In a broader and more honest context, OAT is a deeply philosophical manifesto on the subject of eating animals. Fat & Salt is the third and final video in the series. It is the conceptual conclusion to the illustrated, narrated story that weaves throughout the entire series, and deals instructionally in the matters of preserving pork.

Laying Out Fields For Plowing

Laying Out Fields For Plowing

from issue:

Before starting to plow a field much time can be saved if the field is first staked out in uniform width lands. Methods that leave dead furrows running down the slope should be avoided, as water may collect in them and cause serious erosion. The method of starting at the sides and plowing around and around to finish in the center of the field will, if practiced year after year, create low areas at the dead furrows.

Horseshoeing Part 4A

Horseshoeing Part 4A

According to the size of the horse and his hoofs the nails should be driven from five-eighths to an inch and five-eighths high, and as even as possible. As soon as a nail is driven its point should be immediately bent down towards the shoe in order to prevent injuries. The heads of all the nails should then be gone over with a hammer and driven down solidly into the nail-holes, the hoof being meanwhile supported in the left hand.

Horseshoeing Part 2A

Horseshoeing Part 2A

As there are well-formed and badly formed bodies, so there are well-formed and badly formed limbs and hoofs. The form of the hoof depends upon the position of the limb. A straight limb of normal direction possesses, as a rule, a regular hoof, while an oblique or crooked limb is accompanied by an irregular or oblique hoof. Hence, it is necessary, before discussing the various forms of the hoof, to consider briefly the various positions that may be assumed by the limbs.

Rebuilding the New Idea Manure Spreader

Rebuilding the New Idea Manure Spreader

by:
from issue:

To select a Model 8, 10 or 10A for rebuilding, if you have a few to choose from – All New Idea spreaders have the raised words New Idea, Coldwater, Ohio on the bull gear. The No. 8 is being rebuilt in many areas due to the shortage of 10A’s and because they are still very popular. The 10A is the most recent of the spreaders and all three can be rebuilt. The 10 and 10A are the most popular for rebuilding as parts are available for putting these spreaders back into use.

Haying With Horses

Hitching Horses To A Mower

When hitching to the mower, first make sure it’s on level ground and out of gear. The cutter bar should be fastened up in the vertical or carrier position. This is for safety of all people in attendance during hitching.

Small Farmer's Journal

Small Farmer's Journal
PO Box 1627
Sisters, Oregon 97759
800-876-2893
541-549-2064
agrarian@smallfarmersjournal.com
Mon - Thu, 8am - 4pm PDT